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We present a surface analog to a dripping faucet, where a viscous liquid slides down an immiscible
meniscus. Periodic pinch-off of the dripping filament is observed, generating a succession of monodisperse
floating lenses. We show that this interfacial dripping faucet can be described analogously to its single-
phase counterpart, replacing surface tension by the spreading coefficient, and even undergoes a transition to
a jetting regime. This liquid-liquid-gas system opens perspectives for the study of the dynamics of
emulsions at interfaces.
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Since the times of J. C. Maxwell and Lord Rayleigh, the
dripping faucet has attracted the attention of fluid mechan-
icists, applied mathematicians, and material scientists alike.
Not only did it turn out to be a rich dynamical system—
exhibiting behaviors such as period doubling, chaos, and
dripping-to-jetting transition [1,2]—but also a very fruitful
setting to study the fundamentals of liquid fragmentation [3].
In practice, the dripping faucet has served as a conceptual
basis to develop tools for the generation of controlled liquid
dispersions, either in air or in an immiscible liquid (emul-
sion). Techniques based on the dripping faucet are used in
the pharmaceutical industry, micro- and nanotechnology, or
metallurgy to produce monodisperse droplets with sizes
ranging from several microns to around the millimeter [4].
Three-fluid dispersions (liquid/liquid/gas) are a common

occurrence in food [5] and cosmetic products [6], coatings
[7], as well as in separation [8,9] and cleaning processes
[10–12]. In principle, techniques inspired from the dripping
faucet can be applied to make dispersions involving more
than two fluid phases—for example multiple emulsions for
encapsulation [13], in which phases meet two by two.
However, as soon as more than two immiscible phases
meet, a triple contact line appears, thereby introducing a
new ingredient with its own physics. Despite their practical
interest, associated three-phase fluid systems are still
sparsely understood. Recent advances include the shape
of droplets sitting at the interface between an immiscible
liquid and a gas [14,15]—commonly referred to as liquid
lenses [16,17]—and their coalescence dynamics [18–20].
In this Letter we present a system analogous to the

dripping faucet, where a dispersed phase made of liquid 2 is

generated directly at the surface of an immiscible, denser
liquid 1. We show that this original system, dubbed
“interfacial dripping faucet,” is able to periodically generate
monodisperse liquid lenses in a controlled fashion, and we
rationalize the volume of the produced lenses. This con-
figuration provides a simple route for the generation of
large collections of liquid lenses (emulsions at interfaces)
but also offers a controlled setting to investigate pinch-off
dynamics in the presence of a liquid/liquid/gas contact line.
System description—The interfacial dripping faucet

geometry is sketched in Fig. 1 (see Fig. S2 in [21] for
an experimental picture). A perfectly wetting vertical plate
is partially dipped into a bath of liquid 1, which forms a
meniscus. An injection needle placed vertically against the
plate injects liquid 2 at a constant flow rate Q. Liquid 2
forms a rivulet flowing down the dry substrate until it meets
the three-phase contact line between the plate and the
meniscus of liquid 1. Downstream, a hanging ligament of
liquid 2 forms at the surface of liquid 1. The fate of this
ligament, of width w0 at the contact line, depends on the
liquid properties and flow conditions.
In our experiments, liquid 1 is ultrapurewater, with density

ρ1 ¼ 998 kg=m3, dynamic viscosity μ1 ¼ 0.98 mPa s, and
surface tension σ1a ¼ 72 mN=m in our room conditions
(T ¼ 21 °C). Six different alkanes andmineral oils, all lighter
than water, are used as the dispersed phase (liquid 2). These
liquids have similar densities ρ2, surface tensions σ2a, and
interfacial tensions with water σ12, but dynamic viscosities μ2
spanning almost four decades (1.5 mPa s for dodecane to
7571mPa s formineral oil RTM30). The spreading parameter
S ¼ σ1a − ðσ12 þ σ2aÞ of all those liquid pairs fulfills the
condition −2 minðσ2a; σ12Þ < S < 0, meaning that liquid 2
is able to form stable and uncloaked lenses on water [15,21].
Depending on the viscosity μ2 and the injection flow rate

Q of the dispersed phase, two regimes can be observed, as
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sketched in Fig. 2(a). In the first regime (I), found for small
values of Q and/or μ2, the hanging ligament of liquid 2
pinches off periodically, leading to the formation of
identical liquid lenses that “drip” along the water meniscus
(Movie S1). This periodic dripping regime remains stable
as long as the injection continues, and the water surface is
not entirely covered with lenses. High-speed imaging
reveals that two limiting cases can be distinguished,
depending on the pinch-off location and morphology.
Quasistatic dripping (i) is characterized by a necking
and pinch-off close to the contact line [Fig. 2(b), Movie
S2]. In viscous dripping (ii), the hanging ligament stretches
into a long thread that eventually pinches off further down
on the meniscus [Fig. 2(c), Movie S3]. Increasing the flow
rate Q and the viscosity μ2 of liquid 2, another regime (II)
emerges, in which the ligament never breaks (Movie S5).
Periodic pinch-off regime—We first focus on character-

izing the periodic pinch-off regime (I). Experimentally we
acquire videos of the meniscus region, where lenses are
formed and break up from the hanging ligament. Once a
lens has pinched off, its position x in the direction
perpendicular to the plate is recorded as a function of time
t using an automated in-house image processing code.
Figure 1(c) displays examples of x-t trajectories of a series
of lenses detached consecutively, here for dodecane

injected at Q ¼ 50 μL=min. The time at which the lens
reaches a reference position (∼13 mm in this case) allows
us to robustly measure the time interval Δtn between lens n
and the following lens nþ 1, referred to as the dripping
interval. For a given liquid and flow rate, the average value
Δt of the dripping intervals will be referred to as the
dripping period [21]. In all our experiments, the typical
variability in dripping interval is ≲10%, comparable to that
of the classical dripping faucet in the constant-dripping
interval regime [1]. Moreover, we do not observe any trend
in these small fluctuations of Δtn, which seem to be
stochastic in nature [21]. We therefore treat the dripping
period Δt as a well-defined observable for a given set of
flow parameters.
When dripping is periodic, the volume V of the emitted

lenses and the dripping period Δt are related by mass
conservation, Q ¼ VΔt. This relation holds as long as the
volume of any satellite lens created at pinch-off can be
neglected. Using high-speed recordings of the pinch-off, we
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FIG. 1. (a) Geometry of the interfacial dripping faucet.
(b) Capillary forces exerted on a control volume Ω of liquid
2, as it enters the meniscus region (blue). (c) Example of
measured time evolution of the x position for consecutive lenses
in the periodic pinch-off regime, allowing us to compute the
dripping intervals Δtn.
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FIG. 2. (a) Regimes of the interfacial dripping faucet. The top
sketches qualitatively represent the contour of the hanging
ligament (front view) at different times, increasing from lighter
to darker shade. The bottom sketches show a side view of the
hanging ligament on the water meniscus. (b) Experimental time
sequence of pinch-off for dodecane with Q ¼ 5 μL=min [quasi-
static dripping, (i)]. (c) Time sequence of pinch-off for S200 min-
eral oil, Q ¼ 50 μL=min [viscous dripping, (ii)]. Both scale bars
are 500 μm.
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checked that the satellites are orders of magnitude smaller
than the main lens, consistently with the observations of
Ref. [30]. Figure 3(a) shows the lens volume V, deduced
from the dripping period Δt, as a function of the flow rate Q
for various injected liquids, color-coded according to their
viscosity. We observe that the volume grows slowly with the
flow rate for a given liquid, with a more pronounced slope
the more viscous the liquid is. For a 250-fold increase in flow
rate Q, the lens volume V grows by a factor 3 in the case of
the least viscous liquid we studied (dodecane), and by a
factor 5 for the much more viscous S200 mineral oil. To
rationalize this behavior we propose a mechanistic model
based on two key processes that must be completed for a lens
to detach. First, the injected liquid accumulates at the plate-
water-air contact line until a critical volume is reached,
where capillary forces are no longer able to balance the
weight of the hanging ligament. Then, liquid starts to drip
and a second process starts: the ligament is stretched by a
balance between gravity and elongational viscous stresses,
until pinch-off eventually occurs. Let us now estimate the
timescales of those two processes separately.
Analogously to pendant drops [31], there is a maximum

volume Vc of liquid 2 that capillary forces can sustain
against gravity in the interfacial dripping faucet. To
determine Vc, we apply a force balance on a control volume
Ω containing the injected liquid at the moment of lens
detachment, highlighted by a dashed line in Fig. 1(b).
The total capillary force exerted on Ω is Fc ∼ w0ðσ1a −
σ2a − σ12Þ ¼ w0S [21]. Balancing Fc with the liquid weight
in the hanging filament, ρ2gVc (where g ¼ 9.8 m=s2 is the
acceleration of gravity) we find the critical volume
Vc ∼ w0jSj=ρ2g. In the limit where the flow rate Q and/
or viscosity μ2 are small enough (limit (i) in Fig. 2), Vc is
expected to be a good estimate for the final detached lens
volume. We thus denote the corresponding dripping period
ΔtðiÞ ¼ Vc=Q. Note that, to compute Vc, we treated the
water-air surface—and thus the liquid ligament—as parallel
to gravity. This assumption is valid as long as pinch-off
occurs in the vicinity of the plate-water-air triple contact line,
where the water meniscus is perfectly vertical thanks to the
hydrophilic treatment applied to the plate. In our experi-
ments, the typical lens size V1=3 is smaller than the water
meniscus extension, of order lc1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ1a=ρ1g
p

, supporting
the assumption of a vertical ligament (0.4≲ V1=3=lc1 ≲ 1).
Additionally, because the free surface of the meniscus is
nearly vertical in the region where lenses form, buoyancy
forces are approximately horizontal there [21], as these forces
must be perpendicular to the water/air interface. This justifies
neglecting buoyancy in the vertical force balance.
Once the critical volume is reached, the hanging liga-

ment starts stretching under the action of gravity, with its
motion resisted by viscous forces. Friction due to the water
substrate can be neglected as μ1 ≪ μ2 in most of our
experiments, and the shear strain rate in the bath (of size
∼10 cm) is much smaller than the longitudinal strain rate

inside the ligament (of millimetric length scalew0). Viscous
stresses are then dominated by the Trouton stresses inside
the ligament, like in the viscous round jet [32], rather than
by the shear stresses exerted by the bath on the ligament.
Exact solutions have been obtained for the classical, axi-
symmetric dripping faucet [33], but we focus here on scaling
arguments. Suppose that a viscous liquid starts to be injected
at t ¼ 0 from a nozzle of cross-sectional area A0. At time t,
the weight of liquid hanging is ρ2gQt, which induces a
stretching of the ligament that is mediated by viscosity. The
elongational viscous stress is 3μ2ϵ̇, where ϵ̇ is the stretching
rate, and 3μ2 the Trouton viscosity [34]. The corresponding
viscous force in the ligament is 3μ2ϵ̇A ∼ μ2∂A=∂t, where A
is the instantaneous ligament cross section. Balancing this
force with the lens weight, we find the typical stretching
time of the ligament, ðμ2A0=ρ2gQÞ1=2. For a large enough
flow rate Q and/or viscosity μ2 [limit (ii) in Fig. 2], we
expect this stretching process to take much longer than
reaching the critical volume Vc, therefore setting the drip-
ping period, ΔtðiiÞ ¼ ðμ2A0=ρ2gQÞ1=2.
Most experiments actually lie between the two limits

discussed previously. Since the quasistatic filling and
viscous stretching steps occur in a mostly sequential
manner (stretching starts only once Vc is reached), we
propose to approximate the dripping period in the general
case by the sum of the time taken by those two processes:
Δt ¼ ΔtðiÞ þ CΔtðiiÞ, with C a dimensionless numerical
constant. This constant encapsulates the effect of the
complex geometry of the ligament and cannot be deter-
mined solely by scaling arguments [21]. Such a constant is
also needed in the equations used to predict the drop
volume in the classical dripping faucet [35]. Multiplying
the previous expression by Q=Vc, we arrive at

V
Vc

¼ 1þ CðCaBo2Þ1=2: ð1Þ

We have introduced here the Bond number Bo2 ¼
ρ2gw2

0=jSj of the hanging ligament, and the capillary
number Ca ¼ μ2U=jSj based on the characteristic injection
speed at the contact line, U ¼ Q=A0. The cross-sectional
area A0 of the ligament is deduced from the experimental
value of the ligament width w0 and the wetting properties
[21]. We show in [21] (section III-C) that the interpolation
given by Eq. (1) is a good approximation to the exact
solution derived by Wilson [33] for the vertical, axisym-
metric dripping faucet.
Figure 3(b) shows the dimensionless volume V=Vc as a

function of the dimensionless group CaBo2 for all the liquids
used in our experiments. The color encodes the Ohnesorge
number, Oh ¼ μ2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2jSjw0

p

. The experiments nearly col-
lapse onto a master curve of the form given in Eq. (1) with a
fitted constant C ¼ 8 (solid line). The dotted line, corre-
sponding to C ðCaBo2Þ1=2 ∼ 1, qualitatively marks the
transition from limiting behaviors (i) to (ii). We find the
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collapse of the data quite remarkable, taking into account
the simplifications of our model. First, the Ohnesorge
number varies more than two orders of magnitude between
the different liquids. Second, when changing liquids, not
only does the Ohnesorge number change but also, to a lesser
extent, the ligament wetting properties on water (i.e.,
Neumann angles) and the Bond number Bo1 ¼ w2

0=l
2
c1.

In regime (I-i), the dimensionless data lies below the
prediction of Eq. (1) and is slightly more scattered. This
is to be expected since the precise value of the ratio ψ ¼
limCaBo2→0 V=Vc must depend on the details of the geometry
of the feeding ligament which, in turn, depend on the
physical properties of the liquids. This is also true for the
classical dripping faucet, where ψ can be as low as 0.6 [36].
For this reason, we do not leave ψ as a free parameter in
Eq. (1), where it is assumed to be 1. Although the agreement

with the experimental data would be quantitatively better, a
single value of ψ should not formally be valid for all liquids.
Moreover, allowing Eq. (1) to have two fitting parameters
would conceal the good job that this equation does at fitting
the experimental data over nearly four decades in the
parameter CaBo2. Instead, the reasonable agreement
obtained with one fitting parameter shows the robustness
of the underlying physical mechanisms.
No pinch-off regime—Increasing further the flow rate

and viscosity of liquid 2, experiments show the emergence
of another regime (denoted (II) in Fig. 2), in which the
hanging ligament never breaks. Movie S4, corresponding
to RTM30 and Q ¼ 20 μL=min, illustrates the transition
towards pinch-off suppression: the ligament wobbles sev-
eral times before eventually breaking. This delayed yet still
periodic pinch-off translates into a very large lens volume
(point marked with an asterisk in Fig. 3), which stands out
of the experimental trend. Increasing further the flow rate
(RTM30 and Q ¼ 50 μL=min), pinch-off is totally sup-
pressed [gray area in Fig. 3(b)]. As illustrated in Movie S5,
the ligament then continuously feeds a floating puddle of
liquid 2 as long as injection continues.
We hypothesize the reason for the occurrence of regime

(II) is that the water meniscus is curved, a fact that we
ignored so far for the description of the periodic dripping
regime (I). As a consequence of this curvature, the effective
gravity felt by the ligament (i.e., the driving force promot-
ing pinch-off) decreases as it slides down. If pinch-off has
not occurred by the time the bath surface becomes
horizontal and the driving force vanishes, then it never
will. More quantitatively, the condition for the transition
from regime (I) to (II) to happen is that the length lpo at
which the ligament would break exceeds the water menis-
cus length lc1. We can estimate the pinch-off distance
as lpo ∼Utpo, with tpo ∼ 6πμ2w0=jSj the time taken by
the stretched ligament to destabilize in the absence of
gravity [21]. Thus, the condition lc1 ∼ lpo for the onset of

regime (II) is expressed as 6πCaBo1=21 ∼ 1 or equivalently,

CaBo2 ∼ Bo2=6πBo
1=2
1 ≈ 0.16, roughly the same for all

liquids. This threshold, plotted as a dashed line in Fig. 3(b),
is consistent with the experimental data: 6πCaBo1=21 ¼ 0.45
for the last point of periodic pinch-off (RTM30;
Q ¼ 20 μL=min), and 6πCaBo1=21 ¼ 1.13 for the first
point of continuous feeding (RTM30; Q ¼ 50 μL=min).
Conclusion—In summary, we explore the physics of

forced liquid dripping along an immiscible liquid/air inter-
face, in partial wetting conditions. This three-phase con-
figuration, dubbed “interfacial dripping faucet,” exhibits a
periodic pinch-off regime in a wide range of control
parameters, leading to the generation of monodisperse
liquid lenses. Both the critical volume and the dripping
period are found to follow analogous laws to the free,
axisymmetric dripping faucet [32,33], but with a key
difference: the surface tension of the injected liquid must

(a)

(b)

FIG. 3. (a) Average liquid lens volume, V ¼ QΔt, as a function
of the flow rateQ. The color encodes the liquid dynamic viscosity
μ2. (b) Dimensionless lens volume V=Vc as a function of the
dimensionless group CaBo2. The color encodes the Ohnesorge
number Oh ¼ μ2=

ffiffiffiffiffiffiffiffiffiffiffiffi

ρ2gw0
p

. The solid line corresponds to equa-
tion (1) with C ¼ 8. The dotted and dashed lines show the
transitions between periodic behaviors (i) and (ii), and between
regimes (I) and (II), respectively. The asterisk highlights an
experimental point where we observed that the ligament wobbles
several times before eventually undergoing pinch-off.
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be replaced by the spreading coefficient, jSj. This accounts
for the fact that the surface tension of the water-air interface
does not contribute to keep a lens confined but, on the
contrary, pulls to spread it. Beyond analogies, the inter-
facial dripping faucet also reveals an original regime not
observed in a free vertical dripping faucet. For sufficiently
large viscosity and flow rate of the dispersed phase, pinch-
off is suppressed altogether and the liquid ligament con-
tinuously feeds a floating puddle.
A very important control parameter of the interfacial

dripping faucet is the geometry of the meniscus, which is
itself governed by the plate geometry and wettability. A
steeper meniscus could translate into a delayed no-dripping
regime, a thinner ligament (and hence smaller lenses), or
even into the appearance of multiple dripping periods or a
continuous jetting regime. The interfacial dripping faucet
opens new perspectives to generate two-dimensional emul-
sions in the absence of confining walls [37,38] and, more
generally, to study the fundamentals of liquid-liquid-gas
dispersions, at play in many industrial and natural settings
[5–12].
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