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The motion of an object within a viscous fluid and in the vicinity of a soft surface induces a
hydrodynamic stress field that deforms the latter, thus modifying the boundary conditions
of the flow. This results in elastohydrodynamic interactions experienced by the particle.
Here, we derive a soft-lubrication model, in order to compute all the forces and torque
applied on a rigid sphere that is free to translate and rotate near an elastic wall. We focus on
the limit of small deformations of the surface with respect to the fluid-gap thickness, and
perform a perturbation analysis in dimensionless compliance. The response is computed in
the framework of linear elasticity, for planar elastic substrates in the limiting cases of thick
and thin layers. The EHD forces are also obtained analytically using the Lorentz reciprocal
theorem.
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1. Introduction

The fluid-structure interaction between flows and boundaries is a central situation in
continuum mechanics, encountered at many length and velocity scales. A classical
example is lubrication, where the addition of a liquid film – a lubricant – between two
contacting objects allows for a drastic reduction of the friction between them. Such a
process occurs in a large variety of contexts with hard materials, such as roller bearings,
pistons and gears in industry (Dowson & Higginson 2014), or faults (Brodsky & Kanamori
2001) and landslides (Campbell 1989) in geological settings. At large velocity, or moderate
loading, the liquid film is continuous with no direct contact between the solids. When the
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solids are deformable, the friction force can be described using elastohydrodynamic (EHD)
models within the soft-lubrication approximation (Dowson & Higginson 2014).

The previous EHD coupling is also widely encountered in soft condensed matter, but
at very different pressure and velocity scales (Karan, Chakraborty & Chakraborty 2018).
Examples encompass the remarkable frictional properties of eyelids (Jones et al. 2008)
and cartilaginous joints (Mow, Holmes & Lai 1984; Jahn, Seror & Klein 2016), as well as
biomimetic gels (Gong 2006) and rubbers (Sekimoto & Leibler 1993; Moyle et al. 2020;
Wu et al. 2020; Hui et al. 2021). Of interest as well are the collisions and rebounds of
spheres in viscous environments (Davis, Serayssol & Hinch 1986; Gondret, Lance & Petit
2002; Tan, Wang & Frechette 2019), the rheological properties of soft suspensions and
pastes (Sekimoto & Leibler 1993; Meeker, Bonnecaze & Cloitre 2004), and the self-similar
properties of the contact (Snoeijer, Eggers & Venner 2013).

In the last decade, EHD interactions have been of great interest in the materials
science community with the emergence of contactless rheological methods to measure the
mechanical properties of confined liquids and soft surfaces (Chan, Klaseboer & Manica
2009; Vakarelski et al. 2010; Leroy & Charlaix 2011; Leroy et al. 2012; Villey et al.
2013; Wang, Dhong & Frechette 2015; Guan et al. 2017; Wang et al. 2017a; Wang, Tan
& Frechette 2017b; Wang et al. 2018; Lainé et al. 2019; Bertin et al. 2021). Typically, in
such experimental systems, a spherical colloidal probe is immersed in a fluid and driven
to oscillate, with a nanometric amplitude, near a surface of interest. The force exerted
on the probe is measured by an atomic force microscope, a surface force apparatus or
a tuning-fork microscope, and depends on the properties of both the fluid and the solid
boundary.

Generally, an object that moves in a confined fluid environment experiences an enhanced
drag force with respect to the bulk Stokes law, as a result of the boundary-induced flow
modification (Happel & Brenner 2012). Furthermore, near a soft wall, the hydrodynamic
interactions are modified by the deformation of the boundary that they generate,
yielding a nonlinear coupling. Perturbation methods, assuming a small deformation of
the interface, have been employed in order to calculate the soft-lubrication interactions
exerted on a free infinite cylinder immersed in a viscous fluid and near a thin
compressible elastic material (Salez & Mahadevan 2015). In particular, interesting
inertial-like features have been predicted despite the low-Re-number aspect of the
flow.

Perhaps the most emblematic example of soft-lubrication interaction is the non-inertial
lift force predicted for a particle sliding near a soft boundary (Sekimoto & Leibler
1993; Beaucourt, Biben & Misbah 2004; Skotheim & Mahadevan 2004, 2005; Urzay,
Llewellyn Smith & Glover 2007; Urzay 2010). It might have important implications for
advected biological entities, such as red blood cells (Grandchamp et al. 2013) and vesicles
(Abkarian, Lartigue & Viallat 2002). Only recently, the associated dynamical repulsion
from an immersed soft interface has been studied experimentally. A preliminary qualitative
observation was reported in the context of smart lubricants and elastic polyelectrolytes
(Bouchet et al. 2015). Then a study involving the sliding of an immersed macroscopic
cylinder along an inclined plane pre-coated with a thin layer of gel, showed quantitatively
an effective reduction of friction induced by the EHD lift force (Saintyves et al. 2016).
Subsequently, the same effect was observed in the trajectories of micrometric spherical
beads within a microfluidic channel coated with a biomimetic polymer layer (Davies et al.
2018), and through the sedimentation of a macroscopic sphere near a pre-tensed suspended
elastic membrane (Rallabandi et al. 2018). Finally, direct measurements of the EHD lift
force for two types of elastic materials have been performed at small scales, using surface
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force apparatus and atomic force microscopy, respectively (Vialar et al. 2019; Zhang et al.
2020).

Despite the increasing number of EHD studies involving spherical probes, the
soft-lubrication interactions of a free spherical object immersed in a viscous fluid and
moving near an elastic substrate still have to be calculated. In the present article, we aim at
filling this gap by deriving a soft-lubrication perturbation theory, in order to compute all
the forces and torque for this problem, at first order in dimensionless compliance.

The article is organized as follows. First, we introduce the soft-lubrication framework
for a sphere translating near a soft planar surface, in both normal and tangential directions.
The substrate deformation is assumed to follow the constitutive response of a linear elastic
semi-infinite material. Then we follow a perturbative approach, assuming the substrate
deformation to be small with respect to the fluid-gap thickness, which allows us to find
the normal and tangential forces as well as the torque experienced by the sphere, at first
order in dimensionless compliance. Finally, we discuss the rotation of the sphere, before
providing concluding remarks. Besides, in Appendices A–D, the EHD forces are computed
analytically using the Lorentz reciprocal theorem, while the procedure introduced in the
main text is reproduced for the compressible and incompressible responses of a thin
material.

2. Model

The system is depicted in figure 1. We consider a sphere of radius a, immersed in a
Newtonian fluid of dynamic shear viscosity η and density ρ. The sphere is moving with a
tangential velocity u(t) = u(t) ex directed along the x-axis (by definition of the latter axis),
where ej denotes the unit vector along j. In this first part, we assume that the sphere does
not rotate, i.e. the angular velocity reads Ω = 0. The sphere is placed at a time-dependent
distance d(t) (thus a ḋez normal velocity of the sphere) of an isotropic and homogeneous
linear elastic substrate of Lamé coefficients λ and μ, with a reference undeformed flat
surface in the xy-plane at z = 0. We suppose that the sphere–wall distance is small with
respect to the sphere radius, such that the lubrication approximation is valid. The fluid
inertia is neglected here. Specifically, we assume Re(d/a) � 1, with the Reynolds number
Re = ρua/η. Furthermore, we suppose that the typical time scale of variation of the
sphere velocity is much larger than the diffusion time scale of vorticity that scales as
d2/(η/ρ), such that the flow is described by the steady Stokes equations. This amounts
to assuming that |u̇/u| � η/(ρd2) and |d̈/ḋ| � η/(ρd2). We stress that slippage at solid
surfaces modifies the lubrication pressure as well as the EHD interaction (Vinogradova &
Feuillebois 2000), which is of importance for flows at the nanoscale (Bocquet & Charlaix
2010). Here, we ignore this effect and no-slip boundary conditions are assumed at both the
sphere and wall surfaces. Finally, the system is equivalent to a sphere at rest near a wall
translating with a −(d(t) ez + u(t)) velocity. In such a framework, the fluid velocity field
can be written as

v(r, z, t) = ∇p(r, t)
2η

(z − h0(r, t))(z − δ(r, t)) − u(t)
h0(r, t) − z

h0(r, t) − δ(r, t)
, (2.1)

where r = (r, θ) is the position in the tangential plane xy, ∇ is the two-dimensional
gradient operator on xy, δ(r, t) is the substrate deformation, and z = h0(r, t) is the
sphere surface. Near contact, the latter can be approximated by its parabolic expansion
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h0(r, t) � d(t) + r2/(2a). Volume conservation further leads to the Reynolds equation

∂th(r, t) = ∇ ·
(

h3(r, t)
12η

∇p(r, t) + h(r, t)
2

u(t)
)

, (2.2)

where h(r, t) = h0(r, t) − δ(r, t) is the fluid-gap thickness. In this first part, we assume
that the constitutive elastic response is linear and instantaneous, and that the substrate is a
semi-infinite medium, such that the deformation reads (Davis et al. 1986)

δ(r, t) = − (λ+ 2μ)

4πμ(λ+ μ)

∫
R2

d2x
p(x, t)
|r − x| . (2.3)

We non-dimensionalize the problem through

h(r, t) = d∗H(R, T), r =
√

2ad∗R, d(t) = d∗D(T), δ(r, t) = d∗Δ(R, T),

(2.4a–d)

p(r, t) = ηu∗√2ad∗

d∗2 P(R, T), u(t) = u∗U(T) ex, v = u∗V , t =
√

2ad∗

u∗ T,

(2.5a–d)

where d∗ and u∗ are characteristic fluid-gap distance and tangential velocity, respectively.
The governing equations are then

12∂TH(R, T) = ∇ ·
(

H3(R, T)∇P(R, T) + 6H(R, T) U(T)
)

, (2.6)

H(R, T) = D(T) + R2 − Δ(R, T) (2.7)

and

Δ(R, T) = −κ

∫
R2

d2X
P(X , T)

4π|R − X | , (2.8)

where we introduced the dimensionless compliance

κ = 2ηu∗a(λ+ 2μ)

d∗2μ(λ+ μ)
. (2.9)

The latter is the only dimensionless parameter in the problem. When κ is small with
respect to unity, it corresponds to the ratio between two length scales: the typical substrate
deformation δ ∼ 2ηu∗a(λ+ 2μ)/d∗μ(λ+ μ) induced by a tangential velocity u∗, and the
typical fluid-gap thickness d∗. Throughout the article, we focus on the small-deformation
regime of soft-lubrication where κ � 1 (Essink et al. 2021).

3. Perturbation theory

We perform a perturbation analysis at small κ (Sekimoto & Leibler 1993; Beaucourt et al.
2004; Skotheim & Mahadevan 2004, 2005; Urzay et al. 2007; Urzay 2010; Salez &
Mahadevan 2015; Pandey et al. 2016; Rallabandi et al. 2017; Saintyves et al. 2020; Zhang
et al. 2020), as follows:

H(R, T) = H0(R, T) + κ H1(R, T) + O(κ2), (3.1)

P(R, T) = P0(R, T) + κ P1(R, T) + O(κ2), (3.2)

where the subscript 0 corresponds to the solution for a rigid wall, with H0(R, T) = D(T) +
R2.
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x

y

z

a

rθ

u(t) d(t)

λ, μ

δ(r, t)

η

Ω(t)
β

S0

Sw

Figure 1. Schematic of the system. A rigid sphere of surface S0 is freely moving in a viscous fluid, near a soft
wall of surface Sw in the flat undeformed state. The lubrication pressure field deforms the latter, which induces
an EHD coupling, with forces and torque exerted on the sphere. Note that the surface deformation is magnified
for clarity, but that we restrict the analysis to the δ � d case.

3.1. Zeroth-order solution: rigid wall
At zeroth order O(κ0), (2.6) reads

12Ḋ = ∇ ·
(

H3
0 ∇P0 + 6H0U

)
. (3.3)

In polar coordinates, (3.3) can be rewritten as

L · P0 = R2∂2
RP0 +

(
R + 6R3

D + R2

)
∂RP0 + ∂2

θ P0 = R2

(D + R2)3

(
12Ḋ − 12R cos θU

)
,

(3.4)

where L is a linear operator. We solve this equation using an angular-mode decomposition:

P0(R, T) = P(0)
0 (R, T) + P(1)

0 (R, T) cos θ, (3.5)

where the two coefficients are solutions of the ordinary differential equations

R2 d2P(0)
0

dR2 +
(

R + 6R3

D + R2

)
dP(0)

0
dR

= 12
R2Ḋ

(D + R2)3 , (3.6a)

R2 d2P(1)
0

dR2 +
(

R + 6R3

D + R2

)
dP(1)

0
dR

− P(1)
0 = −12

R3U
(D + R2)3 . (3.7a)

In accordance with the boundary conditions P(R → ∞) = 0 and P(R = 0) < ∞, the
solution is thus

P0(R, T) = − 3Ḋ
2(D + R2)2 + 6RU cos θ

5(D + R2)2 . (3.8)
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Figure 2. Dimensionless deformation fields at the free surface of the soft substrate, for a sphere placed at a unit
distance D = 1 and for two modes of motion: (a) the sphere velocity is directed tangentially to the substrate,
along the x-axis (see black arrow), and is fixed to a unit value U = 1; (b) the sphere is approaching the substrate
normally (see black cross) with a unit velocity Ḋ = −1.

The first-order substrate deformation H1 can then be computed from (2.8) at order O(κ):

H1(R, T) =
∫

R2
d2X

P0(X , T)

4π|R − X | . (3.9)

Using e.g. the spatial Fourier transform H̃1(K) = ∫
R2 H1(R) exp(−iR · K) d2R, we find

H1(R, T) = − 3Ḋ

8
√

D

E(−R2/D)

D + R2 + 3U

10R
√

D

(
−D E(−R2/D)

D + R2 + K(−R2/D)

)
cos θ,

(3.10)

where K and E are the complete elliptic integrals of the first and second kinds (Abramowitz
& Stegun 1964). The dimensionless substrate deformations are plotted in figure 2. In
figure 2(a), the sphere is moving tangentially to the substrate with a unit velocity U = 1.
The deformation exhibits a dipolar symmetry, with a negative sign (i.e. the substrate
is compressed) at the front. Besides, the isotropic term generated by a sphere moving
normally to the substrate is shown in figure 2(b). In particular, for a sphere approaching
the substrate, the latter is compressed.

3.2. First-order solution
We can now compute the first-order pressure field P1 from (2.6) at order O(κ):

12∂TH1 = ∇ ·
(

H3
0 ∇P1 + 3H2

0H1 ∇P0 + 6H1U
)

. (3.11)

Invoking the same linear operator L as in (3.4), we can rewrite (3.11) as

L · P1 = R2

H3
0

(
12∂TH1 − ∇ ·

[
3H2

0H1∇ P0 + 6H1U
])

. (3.12)

We then expand all the terms in the right-hand side of (3.12), and we perform once again
the angular-mode decomposition:

L · P1 = F0(R, T) + F1(R, T) cos θ + F2(R, T) cos 2θ, (3.13)
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where we have introduced the auxiliary functions

F0(R, T) = 18R2U2

25D1/2(D + R2)6

[
(−10D2 + 2DR2) E

(
−R2

D

)

+ (8D2 + 7DR2 − R4)K
(

−R2

D

)]

+ 9R2Ḋ2

4D3/2(D + R2)6

[
(13D2 + 3R2D + 2R4) E

(
−R2

D

)

+ (−4D2 − 5R2D − R4)K
(

−R2

D

)]

−
9R2D̈ E

(
−R2

D

)
2D1/2(D + R2)4 (3.14)

and

F1(R, T) = − 27RUḊ
5D1/2(D + R2)6

[
(−2D2 + 7DR2 + R4) E

(
−R2

D

)

+ 2(D + R2)(D − R2)K
(

−R2

D

)]

− 18RU̇
5D1/2(D + R2)4

[
−D E

(
−R2

D

)
+ (D + R2)K

(
−R2

D

)]
. (3.15)

Note that we have not provided F2 as it does not contribute to the forces and torque. Also
note that by setting D(T) = 1 in the latter expressions, we self-consistently recover the
expression of Zhang et al. (2020). Invoking the angular-mode decomposition P1(R, T) =
P(0)

1 (R, T) + P(1)
1 (R, T) cos θ + P(2)

1 (R, T) cos 2θ , we get, in particular,

R2 d2P(0)
1

dR2 +
(

R + 6R3

D + R2

)
dP(0)

1
dR

= F0(R, T), (3.16)

R2 d2P(1)
1

dR2 +
(

R + 6R3

D + R2

)
dP(1)

1
dR

− P(1)
1 = F1(R, T). (3.17)

Using scaling arguments, we can write the two relevant first-order pressure components
P(i)

1 as

P(0)
1 = U2

D7/2 φU2(R/
√

D) + Ḋ2

D9/2 φḊ2(R/
√

D) + D̈
D7/2 φD̈(R/

√
D) (3.18)

and

P(1)
1 = UḊ

D4 φUḊ(R/
√

D) + U̇
D3 φU̇(R/

√
D), (3.19)

where the φi are five dimensionless scaling functions that depend on the self-similar
variable R/

√
D only. Equations (3.18) and (3.19) can be solved numerically with a
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2 4

R/D1/2 R/D1/2 R/D1/2
0

0.25

0.50

0.75

φi

0 2 4

−2

−1

0
φḊ2¨φD

2 40

0.05

0.10 φU2
(b)(a) (c)

Figure 3. Scaling functions for P(0)
1 (see (3.18)), obtained from numerical integration of (3.16) with the

boundary conditions ∂RP(0)
1 (R = 0, T) = 0 and P(0)

1 (R → ∞, T) = 0.

Runge–Kutta algorithm and a shooting parameter in order to ensure the boundary
condition P1(R → ∞, θ, T) = 0. All the scaling functions are plotted in figures 3 and 4.

As a remark, we recall that the substrate deformation is induced by the flow, and that at
first order it is linear in the velocity field (see (3.10)). Moreover, the volume-conservation
equation involves the time derivative of the fluid-layer thickness, and thus in particular
the time derivative of the substrate deformation. As a consequence, when calculating
the first-order EHD pressure field, we find terms (and thus forces and torques) that are
proportional to the acceleration components D̈ and U̇ of the sphere. At first sight, these
original inertial-like features might seem inconsistent with steady Stokes flows, but are in
fact independent of the fluid density and solely induced by the intimate EHD coupling.

3.3. Forces and torque
The force F exerted by the fluid on the sphere is given by

F =
∫
S0

n · σ ds, (3.20)

where σ = −pI + η(∇v + ∇vT) is the fluid stress tensor, n is the unit vector normal to
the sphere surface and pointing towards the fluid, and I is the identity tensor. Within the
lubrication approximation, the fluid stress tensor reads σ � −pI + ηez∂zv. One can then
evaluate the normal force as

Fz =
∫

R2
p(r) d2r = − 6πηa2ḋ

d
+ 0.41623

η2u2(λ+ 2μ)

μ(λ+ μ)

(a
d

)5/2

− 41.912
η2ḋ2(λ+ 2μ)

μ(λ+ μ)

(a
d

)7/2 + 18.499
η2d̈a(λ+ 2μ)

μ(λ+ μ)

(a
d

)5/2
,

(3.21)

where the prefactors have been estimated numerically using (3.18). We recover in
particular the classical Reynolds force −6πηa2ḋ/d at zeroth order, i.e. near a rigid wall.
We stress that tangential motions do not induce any normal force at zeroth order in κ , as the
corresponding pressure field is antisymmetric in x (see (3.4)). In contrast, such motions do
induce a lift force at first order in κ , due to the symmetry breaking of the contact geometry
associated with the elastic deformation. Interestingly as well, normal motions generate
a viscous adhesive force at first order in compliance (Wang, Feng & Frechette 2020).
Besides, an original EHD force proportional to the sphere’s normal acceleration is
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Soft-lubrication interactions between a sphere and a wall

also found, as discussed previously. Finally, in Appendix A, and following previous
works (Rallabandi et al. 2017; Daddi-Moussa-Ider et al. 2018; Rallabandi et al. 2018;
Masoud & Stone 2019), we use the Lorentz reciprocal theorem in order to recover the
prefactors of (3.21) analytically, which gives, respectively, 243π3/12800

√
2 ≈ 0.41623,

3915π3/2048
√

2 ≈ 41.912 and 27π3/32
√

2 ≈ 18.499. We note that the latter is in
agreement with the result of the linear-response theory derived in Leroy & Charlaix (2011).
Furthermore, we recover the lift prefactor (0.416) obtained previously numerically (Zhang
et al. 2020), as well as analytically in a recently published work (Kargar-Estahbanati &
Rallabandi 2021).

Similarly, the tangential force reads

F ‖=
∫

R2

(
−p(r, t)

r
a

− η∂zv
)

z=h0(r,t)
d2r. (3.22)

Using symmetry arguments, we can show that the tangential force is directed along x,
i.e. F ‖ = Fxex. At small κ , we further expand it as Fx � Fx,0 + κFx,1, where Fx,0 is the
viscous drag force applied on a sphere near a rigid plane wall, and κFx,1 is the first-order
EHD correction. The zeroth-order term cannot be evaluated using the lubrication model
introduced in the previous section, because the integral in (3.22) diverges, as the shear term
η∂zv scales as ∼ r−2 at large r. An exact calculation has been performed using bispherical
coordinates and provides a solution in the form of a series expansion (O’Neill 1964).
Asymptotic-matching methods have also been employed in order to get the asymptotic
behaviour at small d/a (Goldman, Cox & Brenner 1967; O’Neill & Stewartson 1967),
which reads Fx,0 ≈ 6πηau( 8

15 log(d/a) − 0.95429) (see Chaoui & Feuillebois (2003) for
a high-precision expansion). We note that the sphere’s normal velocity does not contribute
to the zeroth-order tangential force, as expected by symmetry.

The first-order EHD correction can be computed with the present model, as the
correction pressure field and shear stress scale as ∼r−5, at large r. It reads

Fx,1 = 2πηu∗a
∫ ∞

0

[
−2RP(1)

1 − H0

2

(
∂RP(1)

1 + P(1)
1
R

)

− H(1)
1
2

∂RP(0)
0 − H(0)

1
2

(
∂RP(1)

0 + P(1)
0
R

)
+ 2

UH(0)
1

H2
0

]
R dR, (3.23)

where H(i)
1 is the amplitude of the ith mode in the angular-mode decomposition of H1.

Evaluating the latter integral numerically, we find

Fx ≈ 6πηau
(

8
15

log
(

d
a

)
− 0.95429

)
− 10.884

η2uḋ(λ+ 2μ)

μ(λ+ μ)

(a
d

)5/2

+ 0.98661
η2u̇a(λ+ 2μ)

μ(λ+ μ)

(a
d

)3/2
. (3.24)

We stress that the latter equation is not an exact truncated expansion. In Appendix B,
we use again the Lorentz reciprocal theorem in order to compute the first-order EHD
force, and we obtain the following analytical expressions for the coefficients of (3.24):
−(3177π3/6400

√
2) � −10.884 and 9π3/200

√
2 � 0.98661, respectively.
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The torque exerted by the fluid on the sphere, with respect to its centre of mass, is given
by

T =
∫
S0

an × (n · σ ) ds. (3.25)

The latter is directed along the y-direction for symmetry reasons, i.e. T = Tyey. At small
κ , we further expand it as Ty � Ty,0 + κTy,1. For the same reason as with the the viscous
drag force near a rigid wall, the viscous torque near a rigid wall cannot be computed within
the lubrication model. Using asymptotic-matching methods (O’Neill & Stewartson 1967;
Chaoui & Feuillebois 2003), it is found to be Ty,0 ≈ 8πηua2(− 1

10 log(d
/
a) − 0.19296).

In contrast, the first-order EHD correction can be computed with the present model, and
reads

Ty,1 = − 2ηu∗a2π

∫ ∞

0

[
H0

2

(
∂RP(1)

1 + P(1)
1
R

)
+ H(1)

1
2

∂RP(0)
0

+ H(0)
1
2

(
∂RP(1)

0 + P(1)
0
R

)
+ 2

UH(0)
1

H2
0

]
R dR. (3.26)

Evaluating the latter integral numerically, we find

Ty ≈ 8πηua2
(

− 1
10

log
(

d
a

)
− 0.19296

)
+ 10.884

η2uaḋ(λ+ 2μ)

μ(λ+ μ)

(a
d

)5/2

− 0.98661
η2u̇a2(λ+ 2μ)

μ(λ+ μ)

(a
d

)3/2
. (3.27)

The EHD torque in (3.27) is thus the same as the EHD tangential force in (3.24), up to a
dimensional prefactor −a, as already observed for the EHD interactions of a rigid cylinder
near a soft surface (Salez & Mahadevan 2015).

So far, we have focused on the particular case of a semi-infinite elastic material.
In Appendices C and D, we apply the same soft-lubrication approach to other elastic
models describing thin substrates, which are also widespread in practice. We find similar
expressions, but with different numerical prefactors and scalings with the sphere-wall
distance.

4. Rotation

We now add the rotation of the sphere, with angular velocity Ω(t) in the xy-plane (see
figure 1), to the previous translational motion. We define β as the angle between Ω and
the x-axis. We stress that Ω is not necessarily orthogonal (i.e. β = π/2) to the translation
velocity. We discard the rotation along the z-axis (e.g. for a spinner), because it does not
induce any soft-lubrication coupling. Finally, the system is equivalent to a purely rotating
sphere with angular velocity Ω(t), near a wall translating with a −u(t) velocity. In such
a framework, the fluid velocity field at the sphere surface is v = −Ω × an, and thus
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Soft-lubrication interactions between a sphere and a wall

v � −Ω × aez. All together, the fluid velocity field is modified as

v(r, z, t) = ∇p(r, t)
2η

(z − h0(r, t))(z − δ(r, t)) − u(t)
h0(r, t) − z

h0(r, t) − δ(r, t)

+ a Ω(t) × ez
z − δ(r, t)

h0(r, t) − δ(r, t)
, (4.1)

and the Reynolds equation becomes

∂th(r, t) = ∇ ·
⎛
⎝h3(r, t)

12η
∇p(r, t) + h(r, t)

2

⎡
⎣u(t) − a Ω(t) × ez︸ ︷︷ ︸

ũ

⎤
⎦
⎞
⎠ . (4.2)

The problem is thus formally equivalent to the one of a sphere that is purely translating
with effective velocity ũ(t) = u(t) − a Ω(t) × ez. Therefore, we can directly apply the
results from the previous sections, and write all the forces and torque exerted on the sphere,
as

Fz = − 6πηa2ḋ
d

+ 243π3

12800
√

2

η2|u − aΩ × ez|2
μ

(a
d

)5/2 − 3915π3

2048
√

2

η2ḋ2

μ

(a
d

)7/2

+ 27π3

32
√

2

η2d̈a
μ

(a
d

)5/2
, (4.3)

F ‖=6πηau
[

8
15

log
(

d
a

)
− 0.95429

]
+ 6πηa2ez × Ω

[
2
15

log
(

d
a

)
+ 0.25725

]

− 3177π3

6400
√

2

η2(u − aΩ × ez)ḋ
μ

(a
d

)5/2 + 9π3

200
√

2

η2(u̇ − aΩ̇ × ez)a
μ

(a
d

)3/2

(4.4)

and

T ‖=8πηa2ez × u
[
− 1

10
log

(
d
a

)
− 0.19296

]
+ 8πηa3Ω

[
2
5

log
(

d
a

)
− 0.37085

]

+ 3177π3

6400
√

2

η2(u − aΩ × ez)aḋ
μ

(a
d

)5/2 − 9π3

200
√

2

η2(u̇ − aΩ̇ × ez)a2

μ

(a
d

)3/2
,

(4.5)

where we have invoked the force and torque induced by the rotation of a sphere near a rigid
wall (Goldman et al. 1967; Urzay 2010) and where the analytical prefactors are computed
in Appendices A and B. We stress that the expressions of the EHD forces and torque for
a sphere purely translating near thin elastic substrates, as derived in Appendices C and
D, can be generalized to further include the sphere’s rotation by similarly following the
transformation u(t) → u(t) − a Ω(t) × ez.

5. Conclusion

We developed a soft-lubrication model in order to compute the EHD interactions exerted
on an immersed sphere undergoing both translational and rotational motions near various
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2 4

R/D1/2 R/D1/2
0

0.2

0.4

φi

φUḊ

φU̇

0 2 4

− 0.04

− 0.02

0(b)(a)

Figure 4. Scaling functions for P(1)
1 (see (3.19)), obtained from numerical integration of (3.17), with the

boundary conditions P(1)
1 (R = 0, T) = 0 and P(1)

1 (R → ∞, T) = 0.

types of elastic walls. The deformation of the surface was assumed to be small, which
allowed us to employ a perturbation analysis in order to obtain the leading-order EHD
forces and torque. The obtained interaction matrix exhibits a form that is qualitatively
similar to the one found for a two-dimensional cylinder moving near a thin compressible
substrate (Salez & Mahadevan 2015). In both cases, the EHD coupling is nonlinear
and generates quadratic terms in the sphere velocity, thus breaking the time-reversal
symmetry of the Stokes equations. In addition, original inertial-like terms proportional
to the acceleration of the sphere are found – despite the assumption of steady flows.
Therefore, while the quantitative details such as numerical prefactors and exponents differ
in three dimensions and when using more realistic constitutive elastic responses, we expect
that the typical zoology of trajectories identified previously (Salez & Mahadevan 2015)
will also hold for spherical objects – and will even be extended with the added degree of
freedom. As such, the asymptotic predictions obtained here may open new perspectives in
colloidal science and biophysics, through the understanding and control of the emerging
interactions within soft confinement or assemblies.
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Appendix A. Lorentz reciprocal theorem: normal force

In this appendix, we compute the first-order normal EHD force using the Lorentz
reciprocal theorem for Stokes flows (Rallabandi et al. 2017; Daddi-Moussa-Ider et al.
2018; Rallabandi et al. 2018; Masoud & Stone 2019), in order to recover analytically the
numerical prefactors obtained in the main text. To do so, we introduce the model problem
of a sphere moving in a viscous fluid and towards an immobile, rigid, planar surface.
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Soft-lubrication interactions between a sphere and a wall

We note V̂ ⊥ = −V̂⊥ez, the velocity at the particle surface S0, and we assume a no-slip
boundary condition at the undeformed wall surface Sw located at z = 0 (see figure 1). The
viscous stress and velocity fields of the model problem follow the steady, incompressible
Stokes equations ∇ · σ̂⊥ = 0 and ∇ · v̂⊥ = 0, and we use the lubrication approximation.
In this framework, the stress tensor is σ̂⊥ � −p̂⊥I + ηez∂zv̂⊥, with

p̂⊥(r) = 3ηV̂⊥a

ĥ2(r)
, v̂⊥(r, z) = ∇p̂⊥(r)

2η
z(z − ĥ(r)), ĥ(r) = d + r2

2a
. (A1a–c)

The Lorentz reciprocal theorem states that∫
S

n · σ · v̂⊥ ds =
∫
S

n · σ̂⊥ · v ds, (A2)

where S = S0 + Sw + S∞ is the total surface bounding the flow, and S∞ is the surface
located at r → ∞. The latter does not contribute here. Using the boundary conditions for
the model problem, we get

V̂ ⊥ · F = −V̂⊥Fz =
∫
S

n · σ̂⊥ · v ds. (A3)

To find the force exerted on the sphere in the real problem, one needs to specify the
boundary conditions for the real velocity field. Here, we assume that the sphere does
not rotate, and we describe the flow in the translating reference frame of the particle.
The no-slip boundary condition thus reads v = 0 on S0. We further assume a small
deformation of the wall, so that the velocity field at the undeformed wall surface can be
obtained using the Taylor expansion:

v|z=0 = v|z=δ − δ∂zv0|z=0

= −uex − ḋez + (∂t − u∂x)δez − δ∂zv0|z=0, (A4)

where v0 is the zeroth-order velocity field near a rigid surface. Using results from the main
text, we find

∂zv0|z=0 = − 3ḋr(
d + r2

2a

)2 er + 2u

5
(

d + r2

2a

)
⎛
⎜⎜⎝

⎛
⎜⎜⎝7 − 6d

d + r2

2a

⎞
⎟⎟⎠ cos θer − sin θeθ

⎞
⎟⎟⎠ .

(A5)
Combining (A1a–c) and (A4), we find the normal force:

Fz = 1

V̂⊥

∫
R2

(
p̂⊥(−ḋ + ∂tδ − u∂xδ) + η∂zv̂⊥|z=0 · ∂zv0|z=0δ

)
dr. (A6)

After some algebra, and computing the integral in Fourier space, we recover the same
expression as in (3.21), which reads

Fz = − 6πηa2ḋ
d

+ A
η2u2(λ+ 2μ)

μ(λ+ μ)

(a
d

)5/2 − B
η2ḋ2(λ+ 2μ)

μ(λ+ μ)

(a
d

)7/2

+ C
η2d̈a(λ+ 2μ)

μ(λ+ μ)

(a
d

)5/2
, (A7)
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where the numerical coefficients A, B, C can be found analytically as

A = 9π

25
√

2

∫ ∞

0
k2 K0(k) (−2K1(k) + k K2(k)) k dk = 243π3

12 800
√

2
, (A8)

B = 9π
√

2
∫ ∞

0
k2 K1(k)

(
K2(k) − k K3(k)

8

)
k dk = 3915π3

2048
√

2
, (A9)

C = 9
√

2π

2

∫ ∞

0
k2 K2

1(k) dk = 27π3

32
√

2
, (A10)

and where Ki is the modified Bessel function of the second kind of order i (Abramowitz
& Stegun 1964).

Appendix B. Lorentz reciprocal theorem: tangential force

In order to compute the tangential force acting on the particle, we apply the Lorentz
reciprocal theorem, but we introduce a different model problem with respect to the
previous section. We consider a sphere translating parallel to a rigid immobile substrate,
with a velocity V̂‖ along the x-axis, and no-slip boundary conditions at both the sphere
and substrate surfaces. The velocity and stress fields are denoted σ̂ ‖ and v̂‖, respectively,
and are solutions of the Stokes equations. The lubrication approximation is used here. The
solution reads

p̂‖(r) = 6ηV̂‖r cos θ

5ĥ2(r)
, v̂‖(r, z) = ∇p̂‖(r)

2η
z(z − ĥ(r)) + V̂ ‖

z

ĥ(r)
, (B1a,b)

as shown in the main text. The Lorentz reciprocal theorem leads to

V̂ ‖ · F = V̂‖Fx =
∫
S

n · σ̂ ‖ · v ds. (B2)

Using the lubrication expression of the stress tensor of the model problem, σ̂ ‖ � −p̂‖I +
ηez∂zv̂‖, we get an expression for the tangential force as

Fx = 1

V̂‖

∫
R2

[−η∂zv̂‖·u(t) ex − p̂‖(∂t − u(t) ∂x)δ − η(∂zv̂‖·∂zv0)δ
]

dr. (B3)

For the same reason as the one invoked in the main text, the zeroth-order tangential drag
force (i.e. the integral of −η∂zv̂‖ · u(t)ex in (B4)) cannot be computed here as the integral
diverges within the lubrication approximation. In contrast, the first-order EHD force is
well defined in the lubrication framework and can be computed in Fourier space using
Parseval’s theorem, leading to

κFx,1 = − 3177π3

6400
√

2

η2uḋ(λ+ 2μ)

μ(λ+ μ)

(a
d

)5/2 + 9π3

200
√

2

η2u̇a(λ+ 2μ)

μ(λ+ μ)

(a
d

)3/2
. (B4)
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Soft-lubrication interactions between a sphere and a wall

Appendix C. Thin compressible substrate

In this appendix, we derive the EHD interactions exerted on a sphere immersed in a
viscous fluid and near a thin compressible substrate of thickness hsub. The deformation
field follows the Winkler foundation

δ(r, t) = − hsub

(2μ + λ) p(r, t), (C1)

which is valid for substrates of thickness smaller than the typical extent of the pressure
field, namely the hydrodynamic radius

√
2ad (Leroy & Charlaix 2011; Chandler & Vella

2020; Kargar-Estahbanati & Rallabandi 2021). We perform the same asymptotic expansion
as the one in the main text, defining the Winkler dimensionless compliance as (Salez &
Mahadevan 2015)

κW =
√

2hsubηu∗a1/2

d∗5/2(2μ + λ) . (C2)

The first-order substrate deformation, or equivalently here the zeroth-order pressure, reads

HW
1 (R, T) = P0(R, T) = 3Ḋ

2(D + R2)2 + 6RU cos θ

5(D + R2)2 . (C3)

The first-order deformation fields are plotted in figure 5(a,b) for tangential and normal
motions of the sphere, respectively. The deformation exhibits the same structure as the one
in figure 2 for semi-infinite substrates, but the lateral extent of the deformation is narrower.
This is expected as the deformation response induced by a given applied pressure is local
for a thin compressible layer (see (C1)), while semi-infinite substrates display a non-local
response due to the convolution of the pressure with their Green’s function (see (2.3)).
The first-order pressure correction follows the same type of equation as in the main text:

L · PW
1 = FW

0 (R, T) + FW
1 (R, T) cos θ + FW

2 (R, T) cos 2θ, (C4)

with

FW
0 (R, T) = − 144R2U2

25(D + R2)7 [D2 − 6DR2 + R4]

+ 18R2Ḋ2

(D + R2)7 [5D − 4R2] − 18R2D̈
(D + R2)5 (C5)

and

FW
1 (R, T) = 216R3UḊ

5(D + R2)7 [−5D + R2] + 72RU̇
5(D + R2)5 . (C6)

We note that FW
2 does not contribute for the forces and torque. The isotropic component

of the pressure can be found analytically, using polynomial fractions, as

PW,(0)
1 (R, T) = 9

125
7 − 5Y2

(1 + Y2)5
U2

D4 − 3
40

71 + 55Y2 + 30Y4

(1 + Y2)5
Ḋ2

D5 + 3
2

1
(1 + Y2)3

D̈
D4 ,

(C7)

where Y = R/D1/2 is the self-similar variable. However, the first angular component of
the pressure does not exhibit such an analytical solution, and is thus found by numerical
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integration of two scaling functions. Its general expression reads

PW,(1)
1 (R, T) = UḊ

D9/2 φW
UḊ

(
R

D1/2

)
+ U̇

D7/2 φW
U̇

(
R

D1/2

)
. (C8)

Following the same calculation as in the main text, we find the normal force as

FW
z = − 6πηa2ḋ

d
+ 48π

125
η2u2hsub

a(2μ + λ)
(a

d

)3 − 72π

5
η2ḋ2hsub

a(2μ + λ)
(a

d

)4

+ 6πη2d̈hsub

(2μ + λ)
(a

d

)3
. (C9)

We stress that the prefactors 48π/125 and 6π are in agreement with the results in Urzay
et al. (2007) and Leroy & Charlaix (2011), respectively. Similarly, the force along x reads

FW
x = 6πηau

(
8
15

log
(

d
a

)
− 0.95429

)
− 484π

125
η2uḋhsub

a(2μ + λ)
(a

d

)3

+ 12π

25
η2u̇hsub

(2μ + λ)
(a

d

)2
, (C10)

The torque can be evaluated as well, and reads

TW
y = 8πηua2

(
− 1

10
log

(
d
a

)
− 0.19296

)
+ 484π

125
η2uḋhsub

(2μ + λ)
(a

d

)3

− 12π

25
η2u̇ahsub

(2μ + λ)
(a

d

)2
. (C11)

All the prefactors for the EHD corrections of the tangential force and torque have
been found analytically with the Lorentz reciprocal theorem (see Appendix B). Finally,
following the approach in the main text, it is straightforward to generalize (C9), (C10) and
(C11) in order to incorporate rotation.

Appendix D. Thin incompressible substrate

In this appendix, we suppose that the substrate of thickness hsub is incompressible, i.e. of
Poisson ratio ν = 1/2, which means that the first Lamé coefficient λ is infinite. In this
situation, the Winkler foundation is not valid. Instead, the mechanical response of a thin
substrate follows the relation (Leroy & Charlaix 2011; Chandler & Vella 2020)

δ(r, t) = h3
sub

3μ
∇2p(r, t), (D1)

where ∇2 denotes the two-dimensional Laplacian operator in the (x, y)-plane. We perform
the same asymptotic expansion as in the main text, defining the thin-incompressible
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Figure 5. Dimensionless deformation fields at the free surface of two soft substrates, for a sphere placed at
a unit distance D = 1 and for two modes of motion. In (a,b), the substrate’s mechanical response follows the
Winkler foundation (see (C1)). In (c,d), the substrate’s mechanical response is the one of a thin incompressible
layer (see (D1)).

dimensionless compliance as

κ t−i = ηu∗h3
sub

3
√

2μd∗7/2a1/2
. (D2)

The first-order substrate deformation reads

Ht−i
1 (R, T) = −∇2P0(R, T) = −12Ḋ(D − 2R2)

(D + R2)4 + 48RU(2D − R2) cos θ

5(D + R2)4 . (D3)

The deformation fields are plotted in figure 5(c,d), for tangential and normal motions of the
sphere, respectively. The first-order pressure correction follows the same type of equation
as in the main text:

L · Pt−i
1 = Ft−i

0 (R, T) + Ft−i
1 (R, T) cos θ + Ft−i

2 (R, T) cos 2θ, (D4)

with

Ft−i
0 (R, T) = 1152R2U2 (

R2 − 2D
) (+2D2 − 11R2D + 2R4)

25
(
D + R2

)9

+ 432R2 (
2D

(
D − 5R2) + 3R4) Ḋ2(
D + R2

)9 + 144R2 (
2R2 − D

)
D̈(

D + R2
)7 (D5)

933 A23-17

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ite

 d
e 

Bo
rd

ea
ux

, o
n 

01
 Ja

n 
20

22
 a

t 2
1:

13
:3

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
63

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1063


V. Bertin, Y. Amarouchene, E. Raphaël and T. Salez

and

Ft−i
1 (R, T) = −2592R3ḊU

(
7D2 − 12R2D + R4)

5
(
D + R2

)9 − 576R3U̇
(−2D + R2)

5
(
D + R2

)7 . (D6)

We note that Ft−i
2 does not contribute to the forces and torque. The isotropic component

of the pressure can be found analytically, using polynomial fractions, as

Pt−i,(0)
1 (R, T) = 288

(
7Y4 − 21Y2 + 17

)
875

(
1 + Y2

)7
U2

D5 + 126Y2 − 198

7
(
1 + Y2

)7
Ḋ2

D6 + 36

5
(
1 + Y2

)5
D̈
D5 ,

(D7)

where Y = R/D1/2 is the self-similar variable. However, the first angular component of
the pressure does not exhibit such an analytical solution, and is thus found by numerical
integration of two scaling functions. Its general expression reads

Pt−i,(1)
1 (R, T) = UḊ

D11/2 φt−i
UḊ

(
R

D1/2

)
+ U̇

D9/2 φt−i
U̇

(
R

D1/2

)
. (D8)

Following the same calculation as in the main text, we find the normal force as

Ft−i
z = − 6πηa2ḋ

d
+ 432π

875
η2u2h3

sub

a3μ

(a
d

)4 − 192π

35
η2ḋ2h3

sub

a3μ

(a
d

)5

+ 12π

5
η2d̈h3

sub

a2μ

(a
d

)4
. (D9)

We stress that the prefactor 12π/5 is consistent with the linear-response theory in Leroy
& Charlaix (2011). Similarly, the force along x reads

Ft−i
x = 6πηau

(
8
15

log
(

d
a

)
− 0.95429

)
− 64π

35
η2uḋh3

sub

a3μ

(a
d

)4

+ 32π

125
η2u̇h3

sub

a2μ

(a
d

)3
. (D10)

The torque can be evaluated as well, and reads

Tt−i
y = 8πηua2

(
− 1

10
log

(
d
a

)
− 0.19296

)
+ 64π

35
η2uḋh3

sub

a2μ

(a
d

)4

− 32π

125
η2u̇h3

sub
aμ

(a
d

)3
. (D11)

Here again, the prefactors of the transverse force and torque are found using the Lorentz
reciprocal theorem, as discussed above in Appendices A, B and C. We stress that the
thin-incompressible limit is mathematically valid for strictly incompressible substrates,
but that its range of application is limited in practice. Indeed, usual elastomers and
gels, which are considered as almost incompressible, have a Poisson ratio close to ν �
0.49, and thus a tiny but finite compressibility. In recent studies (Saintyves et al. 2016;
Rallabandi et al. 2017; Saintyves et al. 2020), it has been observed that the mechanical
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Soft-lubrication interactions between a sphere and a wall

response of very thin incompressible elastic substrates is better described by the Winkler
foundation (i.e. thin and compressible) than the thin-incompressible limit discussed here.
This observation has then been established on solid theoretical grounds for the EHD
lift (Chandler & Vella 2020), and is intimately rooted in the structure of the elastic
Green’s function. An empirical scaling, based on the numerical calculation of the EHD
lift coefficient, has been derived subsequently (Kargar-Estahbanati & Rallabandi 2021)
and suggests that the thin-incompressible model is valid for thicknesses comprised in the
range

√
7

3 (1/2 − ν)1/2 � hsub/
√

2ad ≤ 0.12. For ν = 0.49, the lower bound of the latter
range is 0.088, which confirms that the validity window of the thin-incompressible model
is limited.
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