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I. INTRODUCTION

As a reference state, we consider a thin viscous film of height h0 sitting on an incompressible elastic layer of thickness
s0 (see Fig. S1). The elastic layer is itself placed atop a rigid substrate. We use a Cartesian coordinate system (x, y,
z), with z being the vertical coordinate. We assume the system to be infinite in the x and y directions. The surface
tension of the air-liquid interface is denoted γ, the viscosity of the fluid (assumed to be Newtonian) η, and the shear
modulus of the elastic material (assumed incompressible, i.e. with a Poisson ratio of 1/2) µ. At initial time, t = 0, we
perturb the air-liquid interface by adding a step function h(x) = h2H(x) with H(x < 0) = −1/2 and H(x > 0) = 1/2.
We assume invariance in the y direction, and that the step height h2 is small compared with the reference height h0.
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 The initial un-deformed cross-section is shown in Figure S1 below.    

 

 

Figure S1:   Cross-section view of liquid and elastic layers of the reference equilibrium state to which will 
be superimposed at t = 0 a deformation of the liquid-air interface.     

A Cartesian coordinate system (x,y,z) is used.  For convenience of calculation, the origin O of the 
coordinate system is placed on the bottom of the elastic layer.  The liquid and the elastic layers are 
assumed to be infinite in the x and y directions and deformation is independent of y.   The elastic layer is 
assumed to be incompressible, with Poisson’s ratio equal to ½.  A summary of key notations is listed 
below. 

� 0s  is the thickness of elastic layer; the interface between elastic and fluid layer is located at z = 

0s  before perturbation is applied. 

� 0h  = thickness of fluid layer before perturbation is applied. 

� After perturbation is applied, the interface between elastic and fluid layer occupies � �EFz h x ,t 

, where t denotes time. 
� After perturbation is applied, the fluid/air interface occupies � �Fz h x ,t  

� � �u x ,z ,t  and � �v x ,z ,t  denote the horizontal and vertical displacements in the elastic layer.   

� � � � �0su x ,t u x ,z s ,t{   and � � � �0 0EFx ,t v x ,z s ,t h sG {   � denote the horizontal and vertical 
surface elastic displacements along the elastic/fluid interface.   

� � � � �F EFx t h x t h x t h' { � � 0( , ) , , = change in thickness of fluid layer. 

� � � � � 0 0( , ) ( , ) , ,Fd x t x t x t h x t h sG ' �  � � = displacement of fluid/air interface. 

� P  = shear modulus of the incompressible elastic layer 
� J  surface tension of the fluid/air interface  
� K  is the fluid viscosity 
� p(x,t) = pressure field in the fluid layer , with respect to the atmospheric pressure 

FIG. S1: Cross-sectional view of the reference equilibrium state, to which will be superimposed a deformation of the air-liquid
interface at initial time (t = 0).

II. CONTROL EXPERIMENT WITH A STEPPED PERTURBATION

The previous h2 � h0 condition is not verified in our experiments (where h2 = h1 = 2h0/3). However, we checked
that this simplification in the model does not affect our general conclusions and is not the source of some discrepancy
observed with the experiments. Indeed, in a test experiment with h2 � h0, we find that the profile width follows a
t1/6 power law with time t (see Fig. S2), consistently with the h1 = h2 experimental case (see Figs. 2 and 3), and in
contrast to the theoretical prediction (see Fig. 6).

∗E-mail: oliver.baeumchen@ds.mpg.de
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FIG. S2: Temporal evolution of the profile width w (defined in the inset of Fig. 2(a)), in log-log scale, for an experiment
with h2 � h1 (see inset). We used the same annealing temperature Ta and PDMS substrate (in grey in the inset) as in the
experiments reported in Figs. 1 and 2.

III. LUBRICATION-ELASTIC MODEL

A. Lubrication description of the liquid layer

As for the capillary levelling of a thin liquid film, of viscosity η, on a rigid substrate [39], we invoke the lubrication
approximation which assumes that the typical horizontal length scale of the flow is much larger than the vertical
one. As a result, at leading order, the vertical flow is neglected and the excess pressure field p (with respect to the
atmospheric pressure) does not depend on z. The incompressible Stokes’ equations thus reduce to:

∂p

∂x
= η

∂2vx
∂z2

, (S1)

which can be integrated in z to get the horizontal velocity vx. The main difference here with the previous model [39]
is that the pressure acts on the elastic layer, giving rise to vertical and horizontal displacements of the liquid-elastic
interface, δ(x, t) and us(x, t) respectively. In addition, the no-slip condition at the liquid-elastic interface implies
that a fluid particle in contact with the elastic surface will have a non-zero horizontal velocity ∂us/∂t. Using this
condition, the vanishing shear stress at the air-liquid interface, and invoking volume conservation, allow one to derive
the following equation:

∂∆

∂t
+

∂

∂x

[
− (h0 + ∆)3

3η

∂p

∂x
+ (h0 + ∆)

∂us
∂t

]
= 0 , (S2)

where ∆(x, t) = h(x, t)−δ(x, t)−h0 is the excess thickness of the liquid layer with respect to the equilibrium value h0,
and h(x, t) is defined in Fig. 1(b). Since the pressure is independent of z, it is fixed by the proper boundary condition,
i.e. the Laplace pressure at the air-liquid interface (we neglect the non-linear term of the curvature at small slopes):

p(x, t) = −γ ∂
2h

∂x2
= −γ ∂

2(∆ + δ)

∂x2
. (S3)

Finally, as the perturbation is assumed to be small (∆ � h0), one can linearize Eq. (S2) and get the governing
equation:

∂∆

∂t
+

∂

∂x

[
−h

3
0

3η

∂p

∂x
+ h0

∂us
∂t

]
= 0 . (S4)
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B. Coupling with the elastic layer

The surface displacements of the liquid-elastic interface are given by:

δ(x, t) = − 1√
2πµ

∫ ∞
−∞

dx′ k(x− x′)p(x′, t) , (S5a)

us(x, t) = − 1√
2πµ

∫ ∞
−∞

dx′ ks(x− x′)p(x′, t) , (S5b)

where k and ks are the Green’s functions of the elastic problem (see Section III C), corresponding to the vertical and

horizontal displacements induced by a normal line load of magnitude −
√

2πµ. We introduce the Fourier transform f̃
of a function f with respect to its variable x as:

f̃(λ) =
1√
2π

∫ ∞
−∞

dx f(x)eiλx , (S6)

where λ is the Fourier variable (i.e. the angular wavenumber). Taking the Fourier transform of Eqs. (S3), (S4),
and (S5), we obtain:

δ̃ = − p̃k̃
µ

=
−k̃γλ2

µ(1 + k̃γλ2/µ)
∆̃ , (S7)

ũs = − p̃k̃s
µ

=
−k̃sγλ2

µ(1 + k̃γλ2/µ)
∆̃ , (S8)

∂∆̃

∂t
= −Ω(λ)∆̃ , (S9)

and:

Ω(λ) =
γλ4h30

3η

1

1 + (γλ2/µ)
(
k̃ + iλh0k̃s

) . (S10)

The solution of Eq. (S9) is:

∆̃(λ, t) = ∆̃(λ, 0) exp[−Ω(λ)t] = − h2
2iλ

√
2

π
exp[−Ω(λ)t] , (S11)

where we have used the initial conditions ∆(x, 0) = h2H(x) (see section I) and δ(x, 0) = 0. Finally, using Eq. (S7),
one has:

∆̃(λ, t) + δ̃(λ, t) =
∆̃(λ, t)

1 + k̃γλ2/µ
. (S12)

Therefore, once the Green’s functions k̃ and k̃s are determined (see Section III C), the displacement h(x, t) − h0 =
∆(x, t)+δ(x, t) of the air-liquid interface with respect to its equilibrium position can be obtained by taking the inverse
Fourier transform of Eq. (S12).

C. Green’s functions for the elastic layer

We consider an incompressible and linear elastic layer of thickness s0 supported on a rigid substrate (the latter
is located at z = −s0, see Fig. 1(a)). The deformation state of the elastic layer is that of plane strain, where the
out-of-plane (i.e. along y, see Fig. 1(a))) displacement is identically zero. The horizontal and vertical displacement
fields, ux(x, z, t) and uz(x, z, t) respectively, are both fixed to zero at the rigid substrate:

ux(x,−s0, t) = 0 , (S13a)
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uz(x,−s0, t) = 0 . (S13b)

On the other side of the layer, the liquid-elastic interface (located at z = 0 at zeroth order in the perturbation,
see Fig. 1(a)) is subjected to the lubrication pressure field p(x, t), but we assume no shear which is valid at leading
lubrication order. Therefore, one has:

σzz(x, 0, t) = −p(x, t) , (S14a)

σxz(x, 0, t) = 0 . (S14b)

In plane strain, the stresses are given by the Airy stress function φ(x, z, t) which satisfies the spatial biharmonic
equation. Specifically:

σxx =
∂2φ

∂z2
, σzz =

∂2φ

∂x2
and σxz = − ∂2φ

∂x∂z
. (S15)

The generalized Hooke’s law for an incompressible material in plane strain reads:

2µ∂zuz = σzz − Γ , (S16a)

2µ∂xux = σxx − Γ , (S16b)

µ(∂xuz + ∂zux) = σxz , (S16c)

where Γ(x, z, t) is the pressure needed to enforce incompressibility, that can be found using the incompressibility
condition:

∂xux + ∂zuz = 0 ⇒ Γ =
σxx + σzz

2
. (S17)

Combining the above, and using the same Fourier-transform convention as in the previous section, we find the following
relations:

σ̃xx = φ̃′′ , σ̃zz = −λ2φ̃ and σ̃xz = iλφ̃′ , (S18)

2µũ′z = − φ̃
′′ + λ2φ̃

2
, (S19a)

−2iλµũx =
φ̃′′ + λ2φ̃

2
, (S19b)

µ(−iλũz + ũ′x) = iλφ̃′ , (S19c)

where the prime denotes the partial derivative with respect to z. Taking the Fourier transform of the spatial biharmonic
equation results in a fourth-order ordinary differential equation:

λ4φ̃− 2λ2φ̃′′ + φ̃′′′′ = 0 , (S20)

whose general solution is:

φ̃(λ, z, t) = A(λ, t) cosh(λz) +B(λ, t) sinh(λz) + C(λ, t)z cosh(λz) +D(λ, t)z sinh(λz) . (S21)

The parameters A, B, C, D are determined using the boundary conditions (Eqs. (S13a), (S13b), (S14a), and (S14b))
and the relations between the Airy stress function and the stresses/displacements (Eqs. (S18) and (S19)). After some
algebra, we find:

A =
p̃

λ2
, B =

p̃

λ2
sinh(λs0) cosh(λs0)− λs0

cosh2(λs0) + (λs0)2
, C = −λB and D = − p̃

λ

cosh2(λs0)

cosh2(λs0) + (λs0)2
. (S22)
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Then, invoking Eqs. (S19b), (S19c), (S21) and (S22) the vertical displacement δ(x, t) = uz(x, 0, t) of the liquid-elastic
interface reads in Fourier space:

δ̃(λ, t) =
1

iλ

(
ũ′x −

iλφ̃′

µ

)
(λ, 0, t) = − p̃

2µλ

sinh(λs0) cosh(λs0)− λs0
cosh2(λs0) + (λs0)2

. (S23)

Using Eqs. (S7) and (S23), we find:

k̃(λ) =
1

2λ

sinh(λs0) cosh(λs0)− λs0
cosh2(λs0) + (λs0)2

. (S24)

In exactly the same way, the horizontal displacement us(x, t) = ux(x, 0, t) of the liquid-elastic interface reads in Fourier
space:

ũs(λ, t) = i
λ2φ̃+ φ̃′′

4µλ
(λ, 0, t) =

ip̃

2µ

λs20
cosh2(λs0) + (λs0)2

, (S25)

which gives:

k̃s(λ) =
1

2i

λs20
cosh2(λs0) + (λs0)2

. (S26)

IV. STOKES-ELASTIC MODEL

The previous lubrication-elastic model assumes that the typical vertical length scale of the flow is much smaller
than the horizontal one. However, the initial stepped interface and thus the early-time profiles are not compatible
with this criterion. Therefore, we now instead solve the incompressible Stokes’ equations for the liquid layer, in order
to go beyond the lubrication approximation.

A. Hydrodynamic description of the liquid layer

We introduce the 2D stream function ψ that is related to the velocity field ~v via the relation ~v = ~∇× (ψ ~ey) with

~ey the out-of-plane unit vector and ~∇× . the curl operator. Similarly to the Airy stress function, the stream function
verifies a biharmonic equation. The kinematic and no-slip conditions at the liquid-elastic interface (located at z = 0
at zeroth order in the perturbation, see Fig. 1(a)) imply, respectively:

vz(x, 0, t) = ∂xψ(x, 0, t) = ∂tuz(x, 0, t) = ∂tδ(x, t) , (S27a)

vx(x, 0, t) = −∂zψ(x, 0, t) = ∂tux(x, 0, t) = ∂tus(x, t) . (S27b)

In addition, at the air-liquid interface (located at z = h0 at zeroth order in the perturbation, see Figs. 1(a) and S1),
we assume no shear and the pressure is set by the Laplace pressure. The continuity of stress thus gives:

σxz(x, h0, t) = η(∂xxψ − ∂zzψ)(x, h0, t) = 0 , (S28a)

σzz(x, h0, t) = −P(x, h0, t) + 2η∂z(∂xψ)(x, h0, t) = −p(x, t) . (S28b)

with P(x, z, t) the excess pressure (with respect to the atmospheric pressure) in the liquid, and p(x, t) = −γ∂xxh
the Laplace pressure. Note that we neglect all nonlinear terms in ∂xh that come from the curvature in the Laplace
pressure and the projection of the normal and tangential vectors onto the x and z axes. Now, we employ a similar
method as the one developed in the previous lubrication-elastic model, and first take the Fourier transform of the
biharmonic equation satisfied by the stream function:

λ4ψ̃ − 2λ2ψ̃′′ + ψ̃′′′′ = 0 , (S29)
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whose general solution is:

ψ̃(λ, z, t) = A2(λ, t) cosh(λz) +B2(λ, t) sinh(λz) + C2(λ, t)z cosh(λz) +D2(λ, t)z sinh(λz) . (S30)

Taking the Fourier transforms of the boundary conditions (Eqs. (S27) and (S28)), we find:

−iλA2 = ∂tδ̃ . (S31a)

λB2 = − ip̃

2ηλ

sinh(λh0)λh0 + cosh(λh0)

cosh2(λh0) + (λh0)2
− i∂tδ̃

sinh(λh0) cosh(λh0)− λh0
cosh2(λh0) + (λh0)2

− ∂tũs
(λh0)2

cosh2(λh0) + (λh0)2
, (S31b)

C2 =
ip̃

2ηλ

sinh(λh0)λh0 + cosh(λh0)

cosh2(λh0) + (λh0)2
+ i∂tδ̃

sinh(λh0) cosh(λh0)− λh0
cosh2(λh0) + (λh0)2

− ∂tũs
cosh2(λh0)

cosh2(λh0) + (λh0)2
, (S31c)

D2 =
−ih0p̃

2η

cosh(λh0)

cosh2(λh0) + (λh0)2
− i∂tδ̃

cosh2(λh0)

cosh2(λh0) + (λh0)2
+ ∂tũs

λh0 + sinh(λh0) cosh(λh0)

cosh2(λh0) + (λh0)2
. (S31d)

Finally, we note that the pressure P(x, z, t) is entirely determined by the stream function. Indeed, in Fourier space,
and invoking the stream function, the x-projection of the Stokes’ equation reads:

iλP̃ = η
(
ψ̃′′′ − λ2ψ̃′

)
. (S32)

B. Coupling with the elastic layer

As in the previous lubrication-elastic model, we solve the elastic part of the problem by introducing the Airy stress
function φ given by Eq. (S21) in Fourier space. Assuming no displacement at the interface between the elastic layer
and the rigid substrate (located at z = −s0, see Fig. 1(a)), one has:

ux(x,−s0, t) = 0 , (S33a)

uz(x,−s0, t) = 0 . (S33b)

Equation (S19) can be used to relate the boundary conditions (Eq. (S33)) to the parameters A, B, C, D (Eq. (S21)).
After some algebra, one finds:

λA = 2µ
iũs(λs0)2 − δ̃[cosh(λs0) sinh(λs0) + λs0]

sinh2(λs0)− (λs0)2
, (S34a)

λB = −2µδ̃ , (S34b)

C = 2µ
−iũs[cosh(λs0) sinh(λs0)− λs0] + sinh2(λs0)δ̃

sinh2(λs0)− (λs0)2
, (S34c)

D = 2µ
−iũs sinh2(λs0) + δ̃[cosh(λs0) sinh(λs0) + λs0]

sinh2(λs0)− (λs0)2
. (S34d)

At the liquid-elastic interface (located at z = 0 at zeroth order in the perturbation, see Fig. 1(a)), the normal-stress
continuity reads:

−P(x, 0, t) + 2η∂z(∂xψ)(x, 0, t) = ∂xxφ(x, 0, t) , (S35)
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or, equivalently, in Fourier space:

P̃(λ, 0, t) + 2iληψ̃′(λ, 0, t) = λ2φ̃(λ, 0, t) . (S36)

Then, by taking the z → 0 limit of Eq. (S32) and by combining it with Eqs. (S21), (S30), and (S36), one obtains:

−2iηλ2B2 = −λ2A . (S37)

Invoking Eqs. (S22) and (S31), Eq. (S37) becomes:

− p̃ cosh(λh0) + λh0 sinh(λh0)

cosh2(λh0) + (λh0)2
− 2ηλ∂tδ̃

cosh(λh0) sinh(λh0)− λh0
cosh2(λh0) + (λh0)2

+ 2iηλ∂tũs
(λh0)2

cosh2(λh0) + (λh0)2

= 2λµ
−iũs(λs0)2 + δ̃[cosh(λs0) sinh(λs0) + λs0]

sinh2(λs0)− (λs0)2
.

(S38)

For simplicity, we neglect the terms of order T∂tδ̃ or T∂tũs with respect to the terms of order δ̃ or ũs, where
T = η/µ is a composite Maxwell-like viscoelastic time. This assumption essentially means that the elastic layer has
an instantaneous response to the applied stress, or that we decouple the fast and slow dynamics and focus on the
latter. This is relevant in our case since T is much smaller than the experimental time scale (see inset of Fig. 4).
Doing so, we get in Fourier space:

−p̃ cosh(λh0) + λh0 sinh(λh0)

cosh2(λh0) + (λh0)2
= 2λµ

−iũs(λs0)2 + δ̃[cosh(λs0) sinh(λs0) + λs0]

sinh2(λs0)− (λs0)2
. (S39)

Besides, the tangential-stress continuity reads:

η(∂xxψ − ∂zzψ)(x, 0, t) = −∂xzφ(x, 0, t) , (S40)

and thus, with a similar treatment, one gets in Fourier space:

p̃
λh0 cosh(λh0)

cosh2(λh0) + (λh0)2
= 2λµ

−iũs(cosh(λs0) sinh(λs0)− λs0) + δ̃(λs0)2

sinh2(λs0)− (λs0)2
. (S41)

By analogy with Eqs. (S5a) and (S5b) of the previous lubrication-elastic model, we introduce two new Green’s
functions k2(x) and ks2(x). Equations (S39) and (S41) thus lead to:

δ̃ = − p̃k̃2
µ

=
−p̃
2µλ

(λs0)2(λh0) cosh(λh0) + [sinh(λh0)λh0 + cosh(λh0)][cosh(λs0) sinh(λs0)− λs0]

[cosh2(λh0) + (λh0)2][cosh2(λs0) + (λs0)2]
, (S42)

ũs = − p̃k̃s2
µ

=
ip̃

2µλ

λh0 cosh(λh0)[cosh(λs0) sinh(λs0) + λs0] + [cosh(λh0) + sinh(λh0)λh0](λs0)2

[cosh2(λh0) + (λh0)2][cosh2(λs0) + (λs0)2]
, (S43)

with:

k̃2(λ) =
1

2λ

(λs0)2(λh0) cosh(λh0) + [sinh(λh0)λh0 + cosh(λh0)][cosh(λs0) sinh(λs0)− λs0]

[cosh2(λh0) + (λh0)2][cosh2(λs0) + (λs0)2]
, (S44)

k̃s2(λ) =
1

2iλ

λh0 cosh(λh0)[cosh(λs0) sinh(λs0) + λs0] + [cosh(λh0) + sinh(λh0)λh0](λs0)2

[cosh2(λh0) + (λh0)2][cosh2(λs0) + (λs0)2]
. (S45)

The two Green’s functions k2 and ks2 have forms that are quite similar to the ones of the previous lubrication-elastic
model, k and ks (see Eqs. (S24) and (S26)). Moreover, in the lubrication limit where λh0 → 0, k2 and ks2 tend
towards k and ks, respectively.
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C. Temporal evolution of the air-liquid interface

Let us write the mass conservation for the liquid layer:

∂t∆ = −∂x
∫ h(x,t)

δ(x,t)

dz vx(x, z, t) = ∂x

∫ h(x,t)

δ(x,t)

dz ∂zψ(x, z, t) = ∂xψ[x, h(x, t), t]− ∂xψ[x, δ(x, t), t] , (S46)

with ∆(x, t) = h(x, t)−δ(x, t)−h0 as in the previous lubrication-elastic model. At the lowest order in the perturbation,
this general expression becomes:

∂t∆ = ∂xψ(x, h0, t)− ∂xψ(x, 0, t) , (S47)

or, equivalently, in Fourier space:

∂t∆̃ + iλ[ψ̃(λ, h0, t)− ψ̃(λ, 0, t)] = 0 . (S48)

Using Eqs. (S3), (S42), and (S43), one gets:

δ̃ =
−k̃2γλ2

µ(1 + k̃2γλ2/µ)
∆̃ , (S49)

ũs =
−k̃s2γλ2

µ(1 + k̃2γλ2/µ)
∆̃ . (S50)

By injecting Eqs. (S30) and (S31) in Eq. (S48), one obtains the ordinary differential equation:

∂t∆̃ = −Ω2(λ)∆̃ , (S51)

with:

Ω2(λ) =
γλ

2η

A(λh0)

B(λh0) + γλ2

µ C(λh0)
, (S52)

and:

A(λh0) = cosh(λh0) sinh(λh0)− λh0 , (S53a)

B(λh0) = cosh2(λh0) + (λh0)2 , (S53b)

C(λh0) = k̃2 [cosh(λh0) + (λh0) sinh(λh0)] + ik̃s2λh0 cosh(λh0) . (S53c)

This differential equation can be solved with the initial condition (step of height h2, see Fig. 1(a)):

∆̃(λ, 0) = − h2
2iλ

√
2

π
, (S54)

thus leading to:

∆̃(λ, t) = − h2
2iλ

√
2

π
exp [−Ω2(λ)t] . (S55)

Then, using Eq. (S49), one has:

∆̃ + δ̃ =
∆̃

1 + γλ2k̃2/µ
. (S56)

Finally, the displacement h(x, t) − h0 = ∆(x, t) + δ(x, t) of the air-liquid interface with respect to its equilibrium
position can be obtained by taking the inverse Fourier transform of Eq. (S56). Figure S3 displays the temporal
evolutions of the profile width ω (see definition in the inset of Fig.2(a)), as derived from the two models presented in
this supplementary material. The Stokes-elastic model exhibits the same qualitative features as the lubrication-elastic
one. In particular, the width of the profile depends on elasticity only at early times, and rapidly tends to a 1/4 power
law – characteristic of the rigid-substrate case. This result suggests that the lubrication approximation, which is not
valid at early times, is not responsible for the discrepancy between the lubrication-elastic model and the experiments
reported in the main text.
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FIG. S3: Temporal evolution of the profile width (defined in the inset of Fig. 2(a)), in log-log scale, as predicted by both
theoretical models, for different shear moduli, viscosities and liquid-film thicknesses. The 1/4 power law corresponding to a
rigid substrate is indicated. The solid lines represent the lubrication-elastic model, and the dashed lines represent the Stokes-
elastic model. The shear moduli are given by the color code, which is identical to the one in Fig. 6. All the other parameters
are identical to the ones used in Fig. 6.


